MyCode
Ana Sayfa
Ziyaretçi Defteri
Forum
Top Liste
Hakkımızda
İletişim
KPSS A
KPSS B
YGS -LYS
DGS
ALES
YDS
AÖF Ders Notu
Diğerleri
1. Sınıf
2. Sınıf
3. Sınıf
4. Sınıf

5. Sınıf
6. Sınıf
7. Sınıf
8. Sınıf
Hukuk YENİ!
İktisat
Maliye
Muhasebe
İşletme
Çeko
Kamu Yönetimi
İstatistik
Ekonometri
Başlık 1
Başlık 2
Başlık 3
Başlık 4
Başlık 5
Başlık 6
Konu Başlığı: Permutasyon - Ders Notu Konu Anlatimi
   

Etüt Dersi, Ygs, Lys, Sbs, Dgs, Kpss Tr.Gg

Permutasyon - Ders Notu Konu Anlatimi

PERMÜTASYON

 

A. SAYMANIN TEMEL KURALI

1. Toplama Kuralı

Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin elemanlarının sayısına eşittir.

Sonlu ve ayrık iki küme A ve B olsun.

     

olmak üzere,

     

 

Sonuç

Ayrık iki işlemden biri m yolla diğeri n yolla yapılabiliyorsa, bu işlemlerden biri veya diğeri m + n yolla yapılabilir.

 

2. Çarpma Kuralı

2 tane elemandan oluşan (a1, a2) ifadesine sıralı ikili denir. Benzer biçimde

(a1, a2, a3) ifadesine sıralı üçlü

(a1, a2, a3, a4) ifadesine sıralı dörtlü

. . .

(a1, a2, a3, ... , an) ifadesine sıralı n li denir.

A ve B sonlu iki küme olsun

      s(A) = m

      s(B) = n

olmak üzere,

      s(A × B) = s(A) × s(B) = m × n dir.

A × B kümesi birinci bileşenleri A dan ikinci bileşenleri B den alınan sıralı ikililerden oluşur.

 

Sonuç

İki işlemden birincisi m yolla yapılabiliyorsa ve ilk işlem bu m yoldan birisiyle yapıldıktan sonra ikinci işlem n yolla yapılabiliyorsa bu iki işlem birlikte

      m × n

yolla yapılabilir.

 

 

B. FAKTÖRİYEL

1 den n ye kadar olan sayma sayılarının çarpımına n faktöriyel denir ve n! biçiminde gösterilir.

     

 

Sonuç

 

 

C. PERMÜTASYON (SIRALAMA)

r ve n sayma sayısı ve r £ n olmak üzere, n elemanlı bir kümenin r elemanlı sıralı r lilerine bu kümenin r li permütasyonları denir.

n elemanlı kümenin r li permütasyonlarının sayısı :

     

 

Sonuç

1.  P(n, n) = n!

2.  P(n, 1) = n

 

 

1. Dairesel (Dönel) Permütasyon

n tane farklı elemanın dönel (dairesel) sıralamasına, n elemanın dönel (dairesel) sıralaması denir.

Elemanlardan biri sabit tutularak n elemanın dönel (dairesel) sıralamalarının sayısı (n – 1)! ile bulunur.

 

2. Tekrarlı Permütasyon

n tane nesnenin n1 tanesi 1. çeşitten, n2 tanesi 2. çeşitten, ... , nr tanesi de r. çeşitten olsun.

n = n1 + n2 + ... + nr olmak üzere bu n tane nesnenin n li permütasyonlarının sayısı,

     


 
Matematik Ders Notları
Geometri Ders Notları
Türkçe Ders Notları
Edebiyat Ders Notları
Tarih Ders Notları
Coğrafya Ders Notları
Fizik Ders Notları
Kimya Ders Notları
Biyoloji Ders Notları
Felsefe Ders Notları
Psikoloji Ders Notları
Sosyoloji Ders Notları
(-)Matematik Ders Videoları
(-)Geometri Ders Videoları
(-)Türkçe Ders Videoları
(-)Edebiyat Ders Videoları
(-)Tarih Ders Videoları
(-)Coğrafya Ders Videoları
(-)Fizik Ders Videoları
Kimya Ders Videoları
Biyoloji Ders Videoları
Felsefe Ders Videoları
Psikoloji Ders Videoları
Sosyoloji Ders Videoları


Tavsiyeler: Başlık 1 | Başlık 2 | Başlık 3 | Başlık 4 | Başlık 5 | Başlık 6 | Başlık 7 | Başlık 8

Copyright © 2014 Başlık 1, Teşekkürler Başlık 2 | Başlık 3 | Başlık 4 | Başlık 5


Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol