MyCode
Ana Sayfa
Ziyaretçi Defteri
Forum
Top Liste
Hakkımızda
İletişim
KPSS A
KPSS B
YGS -LYS
DGS
ALES
YDS
AÖF Ders Notu
Diğerleri
1. Sınıf
2. Sınıf
3. Sınıf
4. Sınıf

5. Sınıf
6. Sınıf
7. Sınıf
8. Sınıf
Hukuk YENİ!
İktisat
Maliye
Muhasebe
İşletme
Çeko
Kamu Yönetimi
İstatistik
Ekonometri
Başlık 1
Başlık 2
Başlık 3
Başlık 4
Başlık 5
Başlık 6
Konu Başlığı: Limit ve Sureklilik - Ders Notu Konu Anlatimi
   

Etüt Dersi, Ygs, Lys, Sbs, Dgs, Kpss Tr.Gg

Limit ve Sureklilik - Ders Notu Konu Anlatimi

LİMİT ve SÜREKLİLİK

 

I. LİMİT

A. SOLDAN YAKLAŞMA, SAĞDAN YAKLAŞMA

x değişkeni a ya, a dan küçük değerlerle yaklaşıyorsa, bu tür yaklaşmaya soldan yaklaşma denir ve biçiminde gösterilir.

x değişkeni a ya, a dan büyük değerlerle yaklaşıyorsa, bu tür yaklaşmaya sağdan yaklaşma denir ve biçiminde gösterilir.

 

B. LİMİT KAVRAMI

Limit kavramını bir fonksiyonun grafiği üzerinde açıklayalım:

     

 

Grafiği verilen y = f(x) fonksiyonu için, apsisleri; x = a nın solunda yer alan ve giderek a ya yaklaşan A(x1, y4) , B(x2, y3) , C(x3, y2) , D(x4, y1), ... noktalarını göz önüne alalım:

Bu noktaların apsisleri olan x1, x2, x3, x4, ... giderek a ya yaklaşırken, ordinatları

f(x1) = y4, f(x2) = y3, f(x3) = y2, f(x4) = y1, ... giderek b ye yaklaşır.

Bu durumu; x, a ya soldan yaklaşıyorken f(x) b ye yaklaşır şeklinde ifade edebiliriz. Bu durumda,

f(x) in x = a daki soldan limiti b dir denir. Ve

     

 

şeklinde gösterilir.

Yukarıdakine benzer şekilde, apsisleri x = a nın sağında yer alan ve giderek a ya yaklaşan

E(x8, y5) , F(x7, y6) , G(x6, y7) , H(x5, y8) , ... noktalarını göz önüne alalım.

Bu noktaların apsisleri olan x8, x7 , x6 , x5 , ... giderek a ya yaklaşırken, ordinatlar f(x8) = y5 , f(x7) = y6 , f(x6) = y7 , f(x5) = y8 , ... giderek d ye yaklaşır.

Bu durumu “x, a ya sağdan yaklaşıyorken f(x) d ye yaklaşır.” şeklinde ifade edebiliriz.

Bu durumda; f(x) in x = a daki sağdan limiti d dir denir. Ve

     

 

biçiminde gösterilir.

 

Kural

f(x) fonksiyonunun x = a daki soldan limiti sağdan limitine eşit ise fonksiyonun x = a da limiti vardır ve x in a noktasındaki limiti L ise,

     

biçiminde gösterilir. x = a daki sağ limit ve sol limit değeri, fonksiyonun x = a daki limitidir.

f(x) fonksiyonunun x = a daki soldan limiti sağdan limitine eşit değil ise fonksiyonun x = a da limiti yoktur.

 

 

C. UÇ NOKTALARDAKİ LİMİT

     

f fonksiyonu [a, b) aralığından [c, d) aralığına tanımlı olduğu için, uç noktalardaki limitleri araştırılırken, sadece tanımlı olduğu tarafın limitine bakılarak sonuca gidilir.

Fonksiyonun bir noktada limitinin olması için, o noktada tanımlı olması zorunlu değildir. Buna göre,

     

 

Kural

 

 

D. LİMİTLE İLGİLİ ÖZELLİKLER

Özellik

f ve g , x = a da limitleri olan iki fonksiyon olsun.

 

Özellik

 

 

Özellik

 

Özellik

 

Özellik

 

 

Özellik

 

 

E. PARÇALI FONKSİYONUN LİMİTİ

Özellik

 

 

 

F. İŞARET FONKSİYONUNUN LİMİTİ

Özellik

f(x) = sgn [g(x)] olsun.

     

 

Bu sonuç genellikle doğrudur. Fakat az da olsa bu sonuca uymayan örnekler vardır.

Söz gelimi, f(x) = sgn(x2) fonksiyonunun x = 0 da limiti vardır ve 1 dir.

 

 

G. TAM DEĞER FONKSİYONUNUN LİMİTİ

Özellik

     

Bu sonuç genellikle doğrudur. Fakat az da olsa bu sonuca uymayan örnekler vardır.

Söz gelimi, fonksiyonunun x = 0 da limiti vardır.

     

 

 

 

H. NİN x = a DAKİ LİMİTİ

Özellik

 

 

I. TRİGONOMETRİK  FONKSİYONLARIN LİMİTİ

1. sinx in ve cosx in limiti

sinx ve cosx fonksiyonu bütün x reel değerleri için tanımlı olduğu için,

     

 

olur.

 

2. tanx in limiti

tanx fonksiyonu olmak üzere,

koşuluna uyan bütün x reel değerleri için tanımlı olduğu için,

     

 

olur.

 

Sonuç

 

 

 

3. cotx in limiti

cotx fonksiyonu olmak üzere, koşuluna uyan bütün x reel değerleri için tanımlı olduğu için,

     

 

olur.

 

Sonuç

 

 

 

J. BELİRSİZLİK DURUMLARI

     

belirsizlikleriyle karşılaştığımızda aşağıda verilen yöntemler kullanılarak limit hesaplanır. Bu limitler türevin içinde vereceğimiz L’Hospital kuralıyla da hesaplanabilir.

 

Kural

 

 

Kural

m, n Î N olmak üzere,

olur.

 

Kural

a > 0 olmak üzere, ¥¥ belirsizliği olan limitler,

     

 

kuralını kullanarak hesaplanabilir.

 

Kural

     

Buna göre, 0 × ¥ belirsizliği veya belirsizliğine dönüştürülerek sonuca gidilir.

 

Kural

 

 

II. SÜREKLİLİK

Kural

     

f(x) fonksiyonu apsisi x = a olan noktada süreklidir.

 

 

Sonuç

y = f(x) fonksiyonu x = a da sürekli ise,

     

 

Uyarı

f(x) fonksiyonu apsisi x = a olan noktada sürekli değil ise, süreksizdir.

 

Kural

 1. Bir fonksiyon bir noktada tanımsız ise, o noktada süreksizdir.

 2. Bir fonksiyon bir noktada limitsiz ise, o noktada süreksizdir.

 3. Bir fonksiyon bir noktada tanımlı ve limitli ancak, tanım değeri limit değerinden farklı ise, bu noktada süreksizdir.


 
Matematik Ders Notları
Geometri Ders Notları
Türkçe Ders Notları
Edebiyat Ders Notları
Tarih Ders Notları
Coğrafya Ders Notları
Fizik Ders Notları
Kimya Ders Notları
Biyoloji Ders Notları
Felsefe Ders Notları
Psikoloji Ders Notları
Sosyoloji Ders Notları
(-)Matematik Ders Videoları
(-)Geometri Ders Videoları
(-)Türkçe Ders Videoları
(-)Edebiyat Ders Videoları
(-)Tarih Ders Videoları
(-)Coğrafya Ders Videoları
(-)Fizik Ders Videoları
Kimya Ders Videoları
Biyoloji Ders Videoları
Felsefe Ders Videoları
Psikoloji Ders Videoları
Sosyoloji Ders Videoları


Tavsiyeler: Başlık 1 | Başlık 2 | Başlık 3 | Başlık 4 | Başlık 5 | Başlık 6 | Başlık 7 | Başlık 8

Copyright © 2014 Başlık 1, Teşekkürler Başlık 2 | Başlık 3 | Başlık 4 | Başlık 5


Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol