MyCode
Ana Sayfa
Ziyaretçi Defteri
Forum
Top Liste
Hakkımızda
İletişim
KPSS A
KPSS B
YGS -LYS
DGS
ALES
YDS
AÖF Ders Notu
Diğerleri
1. Sınıf
2. Sınıf
3. Sınıf
4. Sınıf

5. Sınıf
6. Sınıf
7. Sınıf
8. Sınıf
Hukuk YENİ!
İktisat
Maliye
Muhasebe
İşletme
Çeko
Kamu Yönetimi
İstatistik
Ekonometri
Başlık 1
Başlık 2
Başlık 3
Başlık 4
Başlık 5
Başlık 6
Konu Başlığı: Noktanin Analitik incelemesi Ders Notu Konu Anlatimi
   

Etüt Dersi, Ygs, Lys, Sbs, Dgs, Kpss Tr.Gg

Noktanin Analitik incelemesi Ders Notu Konu Anlatimi

Noktanın Analitik İncelemesi Ders Notu Konu Anlatımı

1. Analitik Düzlem

Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da adlandırılır.

Dik koordinat sistemi

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Eksenlerin kesiştiği noktaya orijin denir.

Analitik düzlemde her noktaya bir (x, y) sayı ikilisi karşılık gelir. Bu sayı ikilisine noktanın koordinatları denir.

P(x, y) noktası için, x noktanın apsisi, y de ordinatıdır. Apsis ve ordinat değerleri eksenlere çizilen dik doğruların eksenleri kestiği noktalardır.

Orijinin koordinatları O(0,0) dır.

x ekseni üzerindeki noktaların ordinatı sıfırdır. A(a, o) noktası gibi. y ekseni üzerindeki noktaların ise apsisi sıfırdır. B(o, b) noktası gibi.

  •  Koordinat eksenleri analitik düzlemi dört bölgeye ayırırlar.

I. Bölge: x > 0
             y > 0

II. Bölge: x < 0
              y > 0

III. Bölge: x < 0
               y < 0

IV. Bölge: x > 0
               y < 0

2. İki nokta arasındaki uzaklık

a. Apsisleri veya ordinatları eşit olan noktalar arasındaki uzaklık.

  • Apsisleri eşit olan iki nokta arasındaki uzaklık, bu iki noktanın ordinatları farkının mutlak değeridir.

    A(a, c) ve

    B(a, b) noktaları için

    |AB| = |c – b|

  • Ordinatları eşit olan iki nokta arasındaki uzaklık, bu iki noktanın apsisleri farkının mutlak değeridir.

A(b, a) ve

B(c, a) noktaları için

|AB| = |c – b|

b. Apsisleri ve ordinatları farklı noktalar arasındaki uzaklık

Analitik düzlemde A(x1,y1) ve B(x2,y2) noktaları arasındaki uzaklık |AB| biçiminde gösterilir.

A ve B noktalarının analitik düzlemdeki yerleri belirtildiğinde AKB dik üçgeni meydana gelir.

AKB dik üçgeninde [AB] hipotenüsdür. [AK] dik kenar uzunluğu iki noktanın apsisleri farkı (x2 – x1) ve [BK] dik kenar uzunluğu iki noktanın ordinatları farkı (y2 – y1) dir.

Pisagor teoreminden iki nokta arası uzaklık;

eşitliği ile bulunabilir.

Burada x1 ile x2 nin ve y1 ile y2 nin yer değiştirmesi sonucu değiştirmez.

  •  İki nokta arası uzaklık bulunurken dik üçgenden de yararlanılabilir.
İki noktanın ordinatları farkı dik üçgenin bir kenarı, apsisleri

farkı ise diğer dik kenarıdır.

Dik üçgenin hipotenüsü bize iki nokta arası uzaklığı verir.

c. Bir noktanın orijine uzaklığı

P(a,b) noktasının orijine uzaklığı

3.Orta Nokta Koordinatları

Yukarıdaki şekilde A(x1, y1) noktası ile B(x2, y2) noktası veriliyor. [AB] doğru parçasının ortasındaki nokta K(x0, y0) noktası ise

  • Köşegenleri birbirini ortalayan dörtgenlerde (kare,dikdörtgen, paralelkenar, eşkenar dörtgen) karşılıklı köşelerin koordinatları toplamları eşittir.

ABCD paralelkenar olduğundan [AC] nin orta noktası, [BD] nin de orta noktasıdır.

Buradan;

x1 + x3 = x2 + x4

y1 + y3 = y2 + y4

4.Belli Oranda Bölen Nokta Koordinatları

Belli oranda bölen noktayı bulurken; verilen oranlar ile apsisler farkı ve ordinatlar farkı arasında benzerlikten kaynaklanan bir eşitlik oluşur.

A(x1,y1) , B(x2,y2) ve C(x3,y3) noktaları için,

eşitliği vardır.

Belli oranda bölen noktayı bulurken yukarıdaki eşitlikten faydalanarak aşağıdaki metod kullanılabilir.

m uzunluğunda (x2 – x1) kadar değişirse

n uzunluğunda (x3 – x2) kadar değişir.

Değişme miktarı artma yada azalma olabilir. Önemli olan noktaların aynı doğrultuda olması ve aynı yönde hareket etmektir. Aynı şeyler ordinatlar için de geçerlidir.

m uzunluğunda (y2 – y1) kadar değişirse

n uzunluğunda (y3 – y2) kadar değişir.

5. Üçgenin Ağırlık Merkezinin Koordinatları

ABC üçgeninin köşe koordinatları
A(x
1,y1), B(x2,y2), C(x3,y3) ve ağırlık merkezi G(xG,yG) ise ağırlık merkezi koordinatları:

Bu eşitlikler belli oranda bölen nokta özellikleri kullanılarak elde edilebilir.

6. Köşe Noktalarının Koordinatları Bilinen Üçgenin Alanı

Köşe koordinatları A(x1,y1), B(x2,y2) ve C(x3,y3) olan ABC üçgeni veriliyor.

 

Köşe koordinatları bilinen üçgenin alanını bulmak için yukarıda olduğu gibi köşe koordinatları alt alta yazılır. İlk yazılan en alta ilave edilir ve şekildeki gibi çarpılır. Elde edilen sonuç ikiye bölünerek alan değeri bulunur. Alan negatif olamayacağından, sonuç negatifte çıksa pozitif kabul edilir. (Mutlak değeri alınır.)

Üç köşesinin koordinatları bilinen bir üçgenin alanı, üçgen analitik düzlemde çizilerek de bulunabilir.

  • Köşe koordinatlarından herhangi ikisinin apsisleri yada ordinatları eşit ise üçgenin kenarlarından biri eksenlere paralel olur. Bu durumda üçgenin alanı çizilerek de bulunabilir.
  • Bir üçgenin alanının sıfır çıkması, köşe koordinatları olarak verilen üç noktanın doğrusal üç nokta olduğunu gösterir.




 




 
Matematik Ders Notları
Geometri Ders Notları
Türkçe Ders Notları
Edebiyat Ders Notları
Tarih Ders Notları
Coğrafya Ders Notları
Fizik Ders Notları
Kimya Ders Notları
Biyoloji Ders Notları
Felsefe Ders Notları
Psikoloji Ders Notları
Sosyoloji Ders Notları
(-)Matematik Ders Videoları
(-)Geometri Ders Videoları
(-)Türkçe Ders Videoları
(-)Edebiyat Ders Videoları
(-)Tarih Ders Videoları
(-)Coğrafya Ders Videoları
(-)Fizik Ders Videoları
Kimya Ders Videoları
Biyoloji Ders Videoları
Felsefe Ders Videoları
Psikoloji Ders Videoları
Sosyoloji Ders Videoları


Tavsiyeler: Başlık 1 | Başlık 2 | Başlık 3 | Başlık 4 | Başlık 5 | Başlık 6 | Başlık 7 | Başlık 8

Copyright © 2014 Başlık 1, Teşekkürler Başlık 2 | Başlık 3 | Başlık 4 | Başlık 5


Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol